Visualizing curvature on the Lorenz manifold

نویسنده

  • H. M. OSINGA
چکیده

The Lorenz manifold is an intriguing two-dimensional surface that illustrates chaotic dynamics in the well-known Lorenz system. While it is not possible to find the Lorenz manifold as an explicit analytic solution, we have developed a method for calculating a numerical approximation that builds the surface up as successive geodesic level sets. The resulting mesh approximation can be read as crochet instructions, which means that we are able to generate a three-dimensional model of the Lorenz manifold. We mount the crocheted Lorenz manifold using a stiff rod as the z-axis, and bendable wires at the outer rim and the two solutions that are perpendicular to the z-axis. The crocheted model inspired us to consider the geometrical properties of the Lorenz manifold. Specifically, we introduce a simple method to determine and visualize local curvature of a smooth surface. The colour coding according to curvature reveals a striking pattern of regions of positive and negative curvature on the Lorenz manifold.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE

A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...

متن کامل

Para-Kahler tangent bundles of constant para-holomorphic sectional curvature

We characterize the natural diagonal almost product (locally product) structures on the tangent bundle of a Riemannian manifold. We obtain the conditions under which the tangent bundle endowed with the determined structure and with a metric of natural diagonal lift type is a Riemannian almost product (locally product) manifold, or an (almost) para-Hermitian manifold. We find the natural diagona...

متن کامل

Visualizing the transition to chaos in the Lorenz system

The Lorenz system still fascinates many people because of the simplicity of the equations that generate such complicated dynamics on the famous butterfly attractor. This paper addresses the role of the global stable and unstable manifolds in organising the dynamics. More precisely, for the standard system parameters, the origin has a two-dimensional stable manifold and the other two equilibria ...

متن کامل

On Stretch curvature of Finsler manifolds

In this paper, Finsler metrics with relatively non-negative (resp. non-positive), isotropic and constant stretch curvature are studied.  In particular, it is showed that every compact Finsler manifold with relatively non-positive (resp. non-negative) stretch curvature is a Landsberg metric. Also, it is proved that every  (α,β)-metric of non-zero constant flag curvature and non-zero relatively i...

متن کامل

Slow invariant manifold of heartbeat model

A new approach called Flow Curvature Method has been recently developed in a book entitled Differential Geometry Applied to Dynamical Systems. It consists in considering the trajectory curve, integral of any n-dimensional dynamical system as a curve in Euclidean n-space that enables to analytically compute the curvature of the trajectory or the flow. Hence, it has been stated on the one hand th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006